If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+18x-10=0
a = 12; b = 18; c = -10;
Δ = b2-4ac
Δ = 182-4·12·(-10)
Δ = 804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{804}=\sqrt{4*201}=\sqrt{4}*\sqrt{201}=2\sqrt{201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{201}}{2*12}=\frac{-18-2\sqrt{201}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{201}}{2*12}=\frac{-18+2\sqrt{201}}{24} $
| 2x-11=73 | | 4(2x+5)=7(3x+2) | | 5p+100=2p+60 | | 0.4x=4.0 | | 3p+5=2p-7 | | x-1/6=3000 | | 8d-2=-2 | | ⅛x=4 | | x-13=-3x-41 | | 3x-15+2=8 | | ({x+4}{2})+({x-1}{8})=x+{3}{4} | | 200X+x^2=4400 | | 9y-27=45 | | 2x+3=2-x | | p/3.5=-20 | | 1/2y-2=10 | | {x+4}{2})+({x-1}{8})=x+{3}{4} | | 75+7+2x=180 | | 75+7+2x=x | | (x+2700000)/2700000=2.64 | | y=1/2*(-3)+1 | | 2(x+9)=7x-13 | | K+5=7k=19 | | (3/4)x-(7/12)x-(2/3)=4 | | X+3=x-2x | | 18n-9=17 | | 6k+2=2k+8 | | M=-475t+1500 | | x+3=-15-5x | | x+3=15+5x | | -(x-3)=-15-5x | | 5^x=145 |